NYS Landfill Regulations

Eric Daly

Lyndsey Nguyen

This Presentation has been revised to remove slides not of interest to NYSDEC.

Our thought process for screening

State Requirement per regulations:

1. Take a sample of the concrete and pea gravel to determine if TENORM exits within our media.

Additional work EPA conducted:

- 1. Scan 100% of concrete and pea gravel to see if any impact
- 2. Take a swipe at roughly 5%-10% of concrete to ensure removable contamination does not exist.

Sample of Concrete and Pea gravel

Sampling is the only way to determine if sample is TENORM.

Gross counts of alpha/beta by handheld Instrumentation cannot determine TENORM. It can only detect increase in counts.

Picture of background location/concrete sample location

Concrete Sample

301101000	N002-CC003	
	N002-CC003-01 0-6	
Sample		
•	Concrete	
	6/14/2016	
	Value	Total
	(pCi/g)	Uncerta
	(Trong)	inty
Radioisotope		
Bismuth-212 (Bi-212)	1.146	1.595
Lead-210 (Pb-210)	0.991	2.308
Lead-212 (Pb-212)	0.623	0.181
Potassium-40 (K-40)	7,051	2.401
Radium-226* (Ra-226)	1.075	0.251
Radium-228 (Ra-228)	0.452	0.415
Thallium-208 (T1-208)	0.253	0.115
Thorium-234 Th-234)	0.521	1.717
Uranium-235 (U-235)	0.148	0.102
Thorium-228 (Th-228)	0.589	0.167
Thorium-230 (Th-230)	0.719	0.181
Thorium-232 Th-232)	0.358	0.113
Uranium-233/234 (U-233/234)	0.692	0.232
Uranium-235/236 (U-235/236)	0.051	0.073
Uranium-238 (U-238)	0.792	0.251

Concrete Backgro

ncrete ckground	N002-CC001 N002-CC001-01 0-6 Concrete 7/10/2016	
	Value (pCi/g)	Total Uncerta inty
Radioisotope		
Bismuth-212 (Bi-212)	0.000	0.638
Lead-210 (Pb-210)	-4.012	14.319
Lead-212 (Pb-212)	0.593	
Potassium-40 (K-40)	8,581	1.792
Radium-226* (Ra-226)	0.588	0.146
Radium-228 (Ra-228)	0.443	0.273
Thallium-208 (T1-208)	0.166	0.070
Thorium-234 Th-234)	1.3609	2.381
Uranium-235 (U-235)	0.0328	0.106
Thorium-228 (Th-228)	0.558	0.210
Thorium-230 (Th-230)	0.439	0.172
Thorium-232 Th-232)	0.274	0.128
Uranium-233/234 (U-233/234)	0.556	0.235
Uranium-235/236 (U-235/236)	0.052	0.096
Uranium-238 (U-238)	0,336	0.173

Conclusion from Samples

- All samples showed that concrete and pea gravel are NORM not TENORM based on quantitative sampling
- Therefore, since our samples are NORM and not TENORM nor "radioactive materials," we have satisfied 6 CRR-NY IV B PART 380 and PART 360 per the Applicability section of each Subpart

BUT... EPA didn't just stop there...

Surface Scan Process

- Our thought process: Hit or no hit!
- Our contaminant of concern is Radium
- Since our pancake probes are calibrated to Cs-137, the pancake would over respond if radium was located on the surface of the concrete
- This would NOT be used to quantify! Qualitative—is it there or not?
- This was a "screening" for us—used mainly for transporting the concrete from the decon area to secured storage container until samples verified not TENORM

So what was our "Screening" limits?

e e n

Conclusion with Scans

- All scans of concrete and pea gravel came out to be less than the screening value of 68 cpm
- Maximum cpm of concrete and pea gravel: 61 cpm

But does it meet the State's suggestion of +/- 2 Standard Deviations above Background?

Let's find a reference area

- Instrument BKG of 34 cpm
 - 2x BKG=68 cpm
- Scanning area BKG of 41 cpm
- Scan area Concrete of 57 cpm

Due to business operations and space, we need to find a reference area:

- Roughly same age of concrete
- Background levels comparable
- Large enough area for multiple measurements

9 e n

Measurement locations of Reference Area

+/- 2 STD of Reference Room

All Scan of concrete were below 61cpm

+/- 2 STD of Scan Location with concrete

All Scan of concrete were below 65 cpm

Recap of Various Scan Methods

Method	Average cpm	Maximum cpm allowed	Concrete Maximum including background (BKG = 30 cpm)
+/- 2 STD of Instrument	34 cpm	41 cpm	61 cpm
+/- 2 STD of Reference Area	53 cpm	61 cpm	61 cpm
+/- 2 STD of Scan Area	57 cpm	65 cpm	61 cpm
2 x Background of Instrument	34 cpm	34 x 2 = 68 cpm	61 cpm
2 x Background of Reference Area	53 cpm	53 x 2 = 106 cpm	61 cpm
2 x Background of Scan Area	41 cpm	41 x 2 = 82 cpm	61 cpm

Recap of Various Scan Methods

Method	Average cpm	Maximum cpm allowed	Concrete Maximum including background (BKG = 30 cpm)
+/- 2 STD of Instrument	34 cpm	41 cpm	61 cpm
+/- 2 STD of Reference Area	53 cpm	61 cpm	61 cpm
+/- 2 STD of Scan Area	57 cpm	65 cpm	61 cpm
2 x Background of Instrument	34 cpm	34 x 2 = 68 cpm	61 cpm
2 x Background of Reference Area	53 cpm	53 x 2 = 106 cpm	61 cpm
2 x Background of Scan Area	41 cpm	41 x 2 = 82 cpm	61 cpm

Screening value isn't much higher than +/- 2 Standard Deviations

Swipe Samples

- For both Scan and Swipe samples, each piece of concrete was given a unique sample number.
- Recordings of both scan and swipes were documented.
- Swipes were taken on every 10 or so concrete pieces (roughly 5%-10%)
- Swipes samples were counted for 10 minutes on a Ludlum 3030.
- All results were below +/- 2 standard deviations above background

